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Abstract. Density functional approaches have become well known in applications of
equilibrium statistical mechanics to phase diagrams, interfacial structures, and free energies.
This paper describes how these methods can be extended to the dynamics of phase transitions.
Two aspects are emphasized: the calculation of free-energy barriers in nucleation and of growth
velocities for crystallization from the melt. Significant deviations from classical nucleation
theory and from diffusion-based theories of crystal growth are found. The continuum density
functional approach is effective in describing the dynamics of collective-mode fluctuations,
which dominate single-particle dynamics in these cases. The role of body-centred ordering at
the interface between a face-centred crystal and the melt is described.

Density functional methods in statistical mechanics start from the mathematically rigorous
statement [1, 2] that the exact free-energy functional of a system determines all its
equilibrium properties: phase diagram, interfacial profiles and free energies, and response to
time-independent external potentials. Such methods have become useful over the last fifteen
years as calculations have demonstrated that approximate free-energy functionals give rise
to accurate predictions of equilibrium properties. Among the problems most successfully
addressed with density functional methods are the density profiles of fluids near free surfaces
and at walls, and the gas–liquid–solid phase transitions of simple materials.

Time-dependent extensions of density functional methods are more problematical.
Results from equilibrium statistical mechanics nearly always lose their mathematical rigour
when extended into the non-equilibrium domain, and that is certainly true of density
functional theory. The importance of problems in dynamics, and the satisfactory equilibrium
results from density functionals, make this effort worthwhile. In this paper we discuss how
density functional approaches can be extended to two important stages in the dynamics of
first-order phase transitions: nucleation and growth. Applications to crystallization from the
melt are emphasized here, although the approaches described have also been successful in
predicting rates for the gas–liquid transition [3].

The density in a periodic solid can be expanded in Fourier components:

ρ(r) = ρ0 + ρs

∑
i

mi exp(iki · r). (1)

The coefficientsmi are order parameters for the liquid-to-crystal transition, zero in the liquid
but finite in the crystal; the average densityρ0 also differs between the two phases (ρ0 = ρs

in the solid). In a non-uniform crystal–liquid system these order parameters vary through
space. It has been found that a Gaussian (quasi-harmonic) description applies reasonably
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well to crystalline solids, even close to the melting point. This implies that the Fourier
components in equation (1) are not independent; each can be related to the first through

mi = (m1)
(ki/k1)

2
. (2)

This two-order-parameter model (average densityρ0 and first structural order parameterm1,
henceforth calledm) is used throughout this paper.

Several approaches have been developed to calculate free-energy functionalsF [ρ(r)]
for crystallization. The free energy is written as

F [ρ(r)] = Fid [ρ(r)] + Fex [ρ(r)] (3)

whereFid is the exact free energy of an ideal (non-interacting) system of particles andFex

is the excess free energy. The second functional derivative ofFex , evaluated for a uniform
fluid, is related to the pair correlation function of the liquid [2]. This constraint on the
free-energy functional is employed in approximate theories. One approach [4] is simply to
functionally expandF about the liquid density and truncate it at second order, but this is of
limited value in more strongly inhomogeneous fluids. A second approach is the weighted-
density approximation [5], in which the excess free energy is written as a function not of
the local density but of a smoothed (or weighted) density. This is a powerful approach,
but is lengthy to implement for inhomogeneous systems. We have therefore adopted a
compromise, first applied by Ohnesorgeet al [6] to surface melting. The Lennard-Jones
potential we study is separated into a hard-sphere part and an attractive tail. The hard-sphere
free energy is treated in the modified weighted-density approximation [7], and the attractive
tail via perturbation theory. Ordinarily, the MWDA could not be used for inhomogeneous
systems; here it is extended via a square-gradient approximation applied throughout order
parameter space. Further details of the functional are given in references [6] and [8]. The
resulting equilibrium phase diagram [6] and surface free energy [8] are in good agreement
with simulation results.

Nucleation is an activated process, so the nucleation rate has the form

J = J0 exp(−1�∗/kT ) (4)

whereJ0 is a dynamic prefactor and1�∗ the free-energy barrier. Nucleation rates are only
weakly sensitive to the prefactor, which can be estimated by relating dynamical equations for
the two order parameters to the width of the dynamic structure factor of the liquid [8]. (This
is the dynamical analogue of constraining the second derivative of the free energy to the
equilibrium liquid correlation function.) The role of density functional theory is to calculate
the nucleation barrier. It might appear that a critical nucleus, being thermodynamically
unstable to growth or decay, could not be calculated using an equilibrium theory. This is
not true, however, because the instability occurs only in the grand canonical ensemble [9].
A system constrained to have a density just above the liquid density (and well below the
solid density) will consist at equilibrium of a small crystalline cluster surrounded by liquid.
By varying the amount of matter in the container, the size of the nucleus will change and
the saddle point that corresponds to the critical nucleus can be calculated and its free energy
determined.

The resulting predictions of nucleation rates for crystallization in Lennard-Jones fluids
[10] differ strikingly between crystal formation in an undercooled liquid and liquid drop
formation in a bulk superheated crystal. In the undercooled liquid, there is no evidence for a
spinodal instability, and the crystal–melt interface sharpens as the temperature is lowered. In
the superheated crystal, an instability appears above the equilibrium freezing point, and the
barrier to nucleation vanishes as the spinodal instability is approached. Near the spinodal,
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the centre of the critical nucleus no longer resembles bulk liquid. Classical nucleation theory
significantly overestimates the barrier to nucleation (and thus underestimates the nucleation
rate) in both cases. (Note that this is opposite to the behaviour found earlier [11] for a less
accurate free-energy functional.)

Once a crystal has nucleated, a liquid–solid interface is created that can move via crystal
or melt growth in an undercooled or superheated system. The dependence of growth velocity
on temperature is an important variable in rapid-solidification processing of materials, and
our goal is to calculate it using non-equilibrium density functional theory. Of the two order
parameters in our theory, the average densityρ0 is a conserved variable and the structural
order parameterm is non-conserved. These satisfy different time-dependent equations,
because in the case ofρ0 matter must be transported from a distance, whilem can fluctuate
purely locally. At first sight, it might appear that the presence of a conserved order parameter
would prevent steady-state growth, but we have shown [12] that including convective
motion (as well as diffusive) leads to a pair of dynamical equations that resemble those
for two coupled non-conserved order parameters. In highly viscous liquids, crystal growth
is governed by the rate of mass transport to the interface and is viscosity dependent; in low-
viscosity liquids (such as liquid metals) it is controlled by the structural order parameter
dynamics with the latter mobility obtained from the dynamic structure factor of the liquid,
as described above and in reference [8].

For a Lennard-Jones fluid [8], we find a strong asymmetry between crystal and melt
growth, just as we found an asymmetry between undercooled and superheated nucleation.
First, near the freezing pointTf there is a rather sudden change in slope of growth velocity
against temperature. Second, the velocity and order parameter profiles approach large
undercooling and superheating differently. In the undercooled liquid, there is no evidence
for a spinodal instability, but a density deficit appears in front of the interface that eventually
leads to viscosity-limited growth. In the superheated crystal, on the other hand, the interface
between the two phases gradually disappears. Growth rates are higher for superheated
crystals than for undercooled liquids, at a given temperature difference from the freezing
point.

The two-order-parameter description we have employed has many of the physical
features of the real liquid-to-crystal phase transition. It is not flexible enough, however, to
include the very interesting behaviour recently found for the equilibrium planar interface and
nucleation crystallites. Ten Woldeet al [13] simulated the interface between a face-centred-
cubic crystal and the melt in a Lennard-Jones system. By carefully analysing local bond
ordering, they found that at the centre of the interface, a characteristic body-centred-cubic
ordering appeared. In other words, in passing from liquid to fcc crystal, an intermediate
bcc phase intervenes over a distance scale of the order of a few lattice spacings. The same
observation affects the nucleation behaviour strongly: the critical nucleus (which is mostly
interface) has considerable bcc character. Only during the later growth stage does its centre
transform into the stable fcc crystal.

We have extended our parametrization of the density to account for this possibility.
An fcc crystal can be continuously deformed into a bcc crystal (via intermediate tetragonal
states) through a Bain distortion [14]. The parameterχ which characterizes the stage of the
transformation varies from 1 (bcc crystal) to 1.414 (fcc crystal) and serves as an additional
order parameter that distinguishes the two solid phases. In our first calculations we have
simplified the problem by fixingρ0 at a value intermediate between the density of the
liquid and of the fcc crystal. The two order parametersχ and m then are treated in a
square-gradient approximation as before, and the bulk and surface free energies calculated.
A metastable bcc bulk phase appears atχ = 1 andm = 0.750, in addition to the stable
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Figure 1. A plot of the two order parametersm and χ as they depend parametrically on the
position z through a planar equilibrium crystal–melt interface. In the equilibrium path shown,
the structure has changed from fcc to bcc by the middle of the interface (nearm = 0.4), as
shown by the fact thatχ has decreased from 1.414 to near 1 by that point. The simpler path in
which m changes at constantχ is of higher free energy and is not followed.

fcc phase atχ = 1.414 andm = 0.818, and the stable liquid atm = 0 (the value ofχ is
irrelevant for the liquid).

It is striking that the equilibrium interface again shows strong evidence of bcc ordering:
the value ofχ changes from 1.414 to close to 1 as the crystal gradually becomes less
ordered and approaches the liquid (see figure 1). The simpler path in which onlym

changes is of higher free energy. This in turn results from the geometry of the free-energy
surface. The lowest barrier between liquid and crystal appears near the bcc crystal, and
the equilibrium interfacial profile passes almost through this saddle point. The results of
computer simulations are thus confirmed by our calculations. Further work will include the
effect of changes in the average density and will look at the nucleation behaviour.
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